The insect cuticle: (4) hydration

The insect cuticle: (4) hydration

This post is part of a series on the insect cuticle as a biological material that can inspire novel engineered materials. The characteristics of the cuticle, setting it apart from most synthetic/engineered materials, will be discussed in this series. The introduction to the series can be found here.

Hydration: Slippery when wet-ish

Traditional manufacturing of engineered materials tries to avoid, at all cost, incorporating water. Yet, the properties of biological materials are determined to a large degree by the absence or presence of water molecules located within the extracellular spaces (=hydration level). The presence of water affects mechanical properties such as toughness or strength. It serves as a plasticizer, keeping a material flexible and resilient. Once an engineered material is manufactured we don’t really want to be able to manipulate these types of properties; materials are to remain static. But wouldn’t there be advantages to having bioinspired materials that are more adaptive depending on their surroundings? Certainly materials that are able to alter their function within a structure at different times will result in some very innovative applications.

Insects go through different life stages, most pronounced in holometabolous insects; egg, caterpillar, pupa, adult. All these life stages exhibit different cuticle characteristics, maybe even on the same body (e.g. tough thorax, soft abdomen).

By Rob Mitchell

Various Sphingid moth life stages and species – with different cuticle characteristics. Art by Rob Mitchell, used with permission.

It is not well understood how hydration influences one of the most impressive features of the insect cuticle: the ability to sclerotize (also called tanning or hardening). The chitin fibers that are a major component of the cuticle are hydrophylic and are thus surrounded by water molecules. Chitin becomes dehydrated when it becomes part of the protein matrix since the proteins within this matrix are generally hydrophobic. This dehydration contributes to cuticle stiffening and de-plasticization. The most commonly referenced mechanism that results in sclerotization is the cross-linking between proteins and phenols that are present in the cuticle. There is certainly some experimental evidence for covalent interactions between proteins and phenols that help stabilize the cuticle, but it is not clear if these interactions directly result in a stiffening of the cuticle. Now, all these interactions between chitin, proteins, phenols and water result in a type of hydrophobic coating of chitin fibrils that increases the mechanical load the proteins can carry. Softening of the cuticle also becomes less of an issue. Just which of these interactions have an hardening effect on the cuticle AND are actually resulting in sclerotization, has yet to be precisely determined

It has been shown that water content of the cuticle has an important role in determining cuticle mechanical properties. At the same time it also clear that sclerotization is not just simply dehydration. In other words, the cuticle minus water becomes hardened, no matter if the cuticle is sclerotized or not. Sclerotization is an irreversible pathway, the bonds cannot be broken. The presence or absence of water in an unsclerotized cuticle means that some fine-tuning of mechanical properties can still occur even after the cuticle has been fully formed.

To me this seems like a feature that we might want to consider using in engineered materials. Fabricating materials using chemistry in water is a different approach, but this is how biological materials are synthesized in nature. To be able to create materials that can adapt to their environment, or are multifunctional, just by varying the degrees of adsorption and absorption of water, could lead to exciting innovations.

Art by Rob Mitchell

Various beetle life stages and species (plus some of their natural enemies) – all with different cuticle characteristics. Art by Rob Mitchell, used with permission.

The insect cuticle: (3) self-assembly

The insect cuticle: (3) self-assembly

This post is part of a series on the insect cuticle as a biological material that can inspire novel engineered materials. The characteristics of the cuticle, setting it apart from most synthetic/engineered materials, will be discussed in this series. The introduction to the series can be found here.

Self-assembly: manufacturing the future

The materials and structures that we humans create for ourselves generally involve large factory manufacturing systems where we “Heat, Beat and Treat” materials into the structure we require.

Motor Manufacturing Gardiner

Motor Manufacturing” By Clive Gardiner for the Empire Marketing Board. c1930 National Archives UK

In contrast to most engineered materials, biological materials are assembled from the bottom up, rather than from the top down. The formation of materials like chitin, which is the main component of the insect cuticle, is the result of self-assembly and well ordered biosynthesis.

In engineering the material used is relatively cheap but the shape of the structure is expensive, since it results of very energy-intensive processing (the heating, beating and treating parts).

A Blast Furnace” By Clive Gardiner for the Empire Marketing Board. c1930 National Archives UK

In biology it is actually the other way around. The instructions for manufacturing processes are stored in the genes of all living things. The information contained in an organism’s DNA determines the sequence of molecules that will be expressed by the organism’s cells. It is the characteristics of these molecules that will determine how they interact and ultimately determine the shape of the final material and resulting structure (=self-assembly). In other words, energy is replaced by information, which is cheap. In biology it is the building blocks that make the structure that are relatively expensive to obtain (through capture, consumption, assimilation, etc.) and organisms cannot afford to waste these building blocks.

The biological manufacturing process is constrained by a range of external factors, which then may result in different structures under different circumstances. These external factors are, for instance, temperature (variable on different time-scales), mechanical loading (variable at different life stages and during different seasons) and the presence or absence of water, light and appropriate nutrition (which all three vary over the lifetime of an organism).

“Kreeping It Real” (Graffiti art on boxcar). Picture by Rob Swatski. Flickr.com.

A characteristic of biological materials is that they grow relatively slowly. At first this may seem like a disadvantage, but since these materials as they grow are exposed to a range of forces they can adapt to situations that may alter over the course of the structure’s lifetime. Engineers, using traditional manufacturing techniques, do not have this luxury, they have to preempt and anticipate changing conditions – or ignore them resulting in a reduced effective lifetime.

Self-assembly happens at all scales in nature – it starts at the molecular scale at which molecules are formed into globs which are formed into fibers. Manufacturing at the nano- or micro-scale may still be in its infancy but great strides are being made. And in the meantime we can apply nature’s lessons regarding biosynthesis and self-assembly at a larger scale – creating hybrids of multiple materials with the functional variety that is required of the material.

As Carl Hastrich points out on his Bouncing Ideas blog:

[the] future is fibre. Everything in nature is a fibre. From beetle exoskeletons, to the incredible structures found in the botanical world, they are all fibres. The results are complex, malleable, repairable materials that integrate a vast array of functions. Have a look at a cross section of human muscle and you’ll see what I mean. Humans on the other hand build with large brittle mono-materials and achieve complex function by mechanically integrating multiple components.

Over the past few decades we have tried to incorporate more manufacturing techniques that are non-toxic, water-based, and do not require high-energy inputs – life-friendly chemistry. 3-D printing techniques open up such an avenue since it is by definition builds from the bottom-up, rather than top-down, thus already mimicking nature in that regard, and new non-toxic base materials for these printers are being developed.

 The future of manufacturing. (Art based on pictures by M. Alleyne,  Yogendra Joshi and MKZero)

The future of manufacturing biological materials. (Art based on pictures by M. Alleyne, Yogendra Joshi and MKZero)

Further Reading

For this post I looked at a lot of graffiti/street art since I wanted my insect images to have an “industrial” feel. I came across some great art. For examples click here and here and (my favorite) here.

Self-assembly lesson for high-school level students.

The Flea Song

The Flea Song

Today I gave the “entomological interlude” during a talk about Ludwig van Beethoven‘s arrangement of Johann Wolfgang Goethe‘s poem “Flohlied” which is a part of “Faust“. The seminar was part of a Cultual Creativity series through the Musicology Division at the University of Illinois. (NB: I am that person who can not read music, yet can recognize Beethoven’s 9th Symphony as the “Die Hard” theme song.)

Das Flohlied (Flea Song) is part of the scene “Auerbach’s Cellar in Leipzig” in Faust I (First published around 1790). The song is about a king who loved a flea on which he lavished many riches. The flea is fitted with fine clothing and is made Head of State. The flea’s family members are also awarded high positions in the government. The other members of the King’s court did not dare speak up and complain. Instead they tried to cope with the biting and the itching, but what they really wanted to do was kill the little critters.

William Kinderman presented a talk on the political satire conveyed by Beethoven in the composers correspondence and in his work around the time Beethoven wrote the music for the Flea Song. For the performance Prof. Kinderman was joined by tenor Jerold Siena.

IMG_4470

I was to provide a little bit of background about the life history of fleas – the entomological interlude. There is much to tell about fleas, but I only had 10 minutes, and was speaking to a non-science audience that was there for the music. But I felt up for the challenge!

I decided to have Goethe’s words dictate the organization of the presentation. Below are my slides, the translation of the poem and my notes.

Slide01

Thank you very much for inviting me to give a little bit of background about fleas and help you connect this insect with both Goethe and Beethoven. (As an aside: This is an iconic drawing of a flea by Robert Hooke from his 1665 book Micrographia, which can be viewed here on the campus of the University of Illinois at the Rare Books and Manuscripts Library)

Slide02A king there was once reigning,
  Who had a goodly flea,
  Him loved he without feigning,
  As his own son were he!

Lets picture ourselves in late 18th Century Western-Europe. Goethe opens das FlohLied, with a description of a King actually being quite fond of a flea. We may consider that odd, and of course it is, but I think it is important to keep in mind that at that time society viewed ectoparasites such as fleas, lice, ticks and bedbugs more favorably, merely as a nuisance. This view of ectoparasites did not really change until the mid-19th Century when it was discovered that arthropods such as mosquitoes could vector horrible diseases. And not until about 1900 was it known that fleas vectored the bacterium that causes the plague.

In other words, a poem or song about a highly regarded flea is not as strange in 1760 as it may seem now.

Slide03Some basic facts about fleas. Fleas are very small. The body of the flea is about 3mm long. Fleas belong to the insect order Siphonaptera, and there are about 2600 described species of fleas. Adult fleas feed on the blood of their mammalian or avian hosts. Only about a handful of the flea species live in close association with humans, and can use humans as a host but none are specialized on humans.

Fleas do not have wings, they are famous for their ability to jump – they have specialized legs. They have also physiological adaptations that help in dispersal. For instance, fleas are able, through the bloodmeal, to determine when a host rabbit is pregnant. In response female fleas will then start producing eggs. As soon as the baby rabbits are born, the female fleas make their way down to them and once on board they start feeding and laying eggs. After 12 days, the adult fleas make their way back to the mother. They complete this mini-migration every time the mother rabbit gives birth. So they don’t have to be able to fly or even jump very far to be able to disperse their offspring.

Slide04His tailor then he summon’d, 
  The tailor to him goes;
  Now measure me the youngster
  For jerkin and for hose!

In the Flea Song the King calls upon dressmakers to make clothing for the fleas. Funny concept, of course, but not really that odd for that time period.

Around the time that Goethe wrote das FlohLied watchmakers tried to harness fleas, with tiny gold wires, to demonstrate their skills in fine manipulation.

In other parts of the world people also dressed up fleas. In Mexico there is a tradition of Pulgas Vestidas, where fleas are dressed and painted to represent people – such as brides and grooms. They are very very small – and probably only contain the head of the flea.

Slide05In satin and in velvet 
  Behold the younker dressed;
  Bedizen’d o’er with ribbons,
  A cross upon his breast.
Prime minister they made him, 
  He wore a star of state;
  And all his poor relations
  Were courtiers, rich and great.

The late 18th century was the start of the flea circus mania in Europe. It is not clear to me if by 1790 this had reached Germany. But it again shows how enamored people (including the King) were with fleas. This is a picture from the famous flea circus in Copenhagen’s Tivoli Gardens, which was open until the mid 1960s. Fleas would be caught and rigged up in a harness made of thin gold wires. These harnesses could then be attached to props. Fleas were made to pull relatively large objects. Or they were given a ball to juggle or kick. [Video]

Slide06The gentlemen and ladies 
  At court were sore distressed;
  The queen and all her maidens
  Were bitten by the pest,
And yet they dared not scratch them, 
  Or chase the fleas away.

In the poem Goethe mentions that the people at the King’s court are getting bit and that the bites start to get itchy.

This is a very good description of a flea bite. Fleas bite…and they suck!

They have mouthparts, that are basically a pair of sharp lancets with serrated edges and a hard, sharp, awl-like instrument. They make a puncture in the skin, opening up blood vessels, and then suck up the blood by creating a tube with their mouthparts.

The flea’s saliva may cause an allergic reaction that results in welts and itching. It is the itching that usually sends people to the doctor and pets to the vet.

Slide07As Professor Kinderman explained the representation of the flea’s jump is obvious in Beethoven’s music. The flea’s jump is an almost unbelievably fast, precise, and reliable motion.

Fleas can jump about 200 times their own body-length. The jump happens so fast that only about 5 years ago the high-speed camera technology was sophisticated enough to capture the jump in such a way that it could conclusively be shown what parts of the leg a flea uses to jump. [Video]

Slide08The energy for a flea leap comes from a spring inside the flea’s leg. This spring stores and then releases the energy needed to jump. Fleas first lock the joint between body and hind leg, and then they contract muscles within the body. This muscle contraction compresses part of the exoskeleton of the flea, most importantly a part of the body that contains the elastic protein resilin. So in the end, not just the muscle, but also the relatively rigid exoskeleton acts as a tensed spring. The lock on the hind legs is then released, and the rapid expansion of the spring releases the stored energy. The forces in the spring are transmitted through the leg, through the feet, to the ground, which propels the jump.

The resilin material is very interesting since it is very resilient, far more so than rubber we use in engineered devices. The flea can repeat this jump many times without suffering material fatigue.

Slide09This brings me to the all important insect cuticle, or exoskeleton. Insects do not have a skeletal system like we do. Insects are covered with this, at least in my eyes, amazing material, made from pretty simple building blocks, that, depending on the species and life stage of the insect, can be hard (think of a beetle) or soft (think of a caterpillar).

In this picture you can see that the cuticle of the flea is divided up into different segments, and that it may have some sensory hairs and glands – so it is not completely one rigid structure. This makes movement and interaction with the environment easier despite having an exoskeleton.

The cuticle is arranged hierarchically, and built from the bottom up – at atmospheric pressure and moderate ambient temperature – using materials that are readily available in nature. This manufacturing technique is not common in human manufacturing when we use lots of pressure, and heat, and nasty chemicals.

The cuticle is made up of different layers and these layers may not line up perfectly. This is a good thing. Sometimes a crack may appear but not be propagated further down, because the different hierarchical layers “stop” the crack. Again, we do no really engineer our materials with this level of resiliency.

(For more detail about the insect cuticle see posts on this blog here, here and here)

Of course, that fleas have such an amazing exoskeleton also has disadvantages…

Slide10If we are bit, we catch them
  And crack them without delay.

You can’t just squash a flea. Similar to bubble wrap if you push on a flea it compresses, it does not pop.

Since the flea’s cuticle is also made up of these different layers, and the layers are not very stiff it makes it that fleas are very difficult to kill. You cannot just step on them, stomp them, or crush them. You actually have to puncture the cuticle, maybe with your nails, and then bend them until they snap – “KNICKEN” as Goethe called it.

And then if you hold your finger on the flea you can also suffocate it “ERSTICKEN”, but this will not be so easy since fleas have multiple entry points for air (not just the mouth area as in mammals).

(Actually the best way to kill a flee is by rubbing it between your fingers so that the legs fall off…then it will not be able to find a new host and continue feeding

Slide11At the risk of going slightly off topic here I want to point out that much of the research done on fleas during the twentieth century was done by Dame Miriam Rothschild. Yes, she was a member of the famous bankers family. Miriam had become interested in fleas because her father Charles had started an impressive flea collection, and her uncle Walter a Natural History Museum.

Miriam was the one who first described the endocrine regulation of reproduction in fleas, as I described, and was also the driving force behind figuring out how fleas jump – the biomechanics of the jump.

I cannot resist these wonderfully inspiring pictures of Rothschild in her (privately funded) lab with her children. She certainly is an inspiration to female scientists like myself.

Thank you so much for giving me the opportunity to share the wonderful lives of fleas with you.

Slide12FleaSongFlyer (Art work by Nils Cordes)

Introducing Engineering Students to BioInspiration

Creativity, Innovation and Vision Courses

At this point in the semester I introduce myself to the students in the Engineering courses with the title Creativity, Innovation and Vision.  There is both an undergraduate (ENG333) and a graduate version of this course (ENG598).

The originator of the course is Dr. Bruce Litchfield. Students in these courses learn that their own state of creativity is not as static as they might expect. Bruce and his collaborators also do research on creativity enhancement; paying special attention to the ways in which engineering students currently incorporate creativity, since it has been shown that for engineering students creativity does not increase as they move through their college courses (the same is likely to be true for students in other disciplines).(1)

The descriptions for the CIV courses are:

“Personal creativity enhancement via exploration of the nature of creativity, how creativity works, and how to envision what others may not. Practice of techniques and processes to enhance personal and group creativity and to nurture a creative lifestyle. Application to a major term project providing the opportunity to move an idea, product, process or service from vision to reality.” (2)

The courses are quite popular with students from all over campus, not just Engineering.  Many of the students who take the graduate level course become teaching assistants for the undergraduate course in subsequent semesters. (I think in this case the term ‘facilitators’ instead of TA is more applicable)

BioInspiration (formerly BioCreativity)

Over the last ~3 years I have worked with Bruce and the TAs on a module we call BioCreativity BioI.  It is basically a module on BioInspiration or Biomimicry. I now kind of regret coming up with yet another term for a field of study that suffers from much confusion due to terminology already, but students seem to like the title because it fits into the focus of the course so perfectly. However, if we adhered to proper terminology more rigorously it should be acknowledged that BioCreativity is actually the combination of biology and art, not biology and technology, as we use it here. [Note: in 2014 we realized that the term Biocreativity created too much confusion and we decided to name this module BioI or BioInspiration].

The BioInspiration module is divided into four class meetings and each meeting is separated by 2 or 3 weeks [Note: in 2014 we also decide to condense the module since students felt they were not able to focus on this one task if they had all these other topics being thrown at them too.]  This week I met the students of two ENG333 sections. This semester a large majority of students are engineers (mechanical, chemical, civil, electrical, bioengineering). A number of students are computer science majors, and advertising majors. A couple of students are majoring in the arts, such as creative writing and graphic design. Students from the humanities are also represented, by majors in philosophy and anthropology. In other words, it is quite a diverse group of students eager to learn how to enhance their creativity.

During our first meeting this past week I introduced the students to the topic of Biocreativity.  I mostly talked unscripted, but I also had a pretty PowerPoint behind me with amazing pictures by Alex Wild (http://www.alexanderwild.com/). [Note: in 2014 the course will have 7 or more sections. Too many for me to visit. We have decided to therefore put this first lecture on video which will be presented to the students during the class.]

  • I continued the introduction by explaining how I became interested in Bioinspiration. I like to tell the students that it is all my husband’s fault. I am married to a mechanical engineer and over the 25 years that we have known each other, we have taken many a road trip. Usually during these trips we end up “discussing” why insects are better/worse at “doing stuff” than human engineers. In the beginning (the first 24 years) he always ended the argument by saying something like: “Well, sure that might be a cool thing that insects can do, but can they fly 500 people across an ocean? No? Well, there then!” My interest in teaching modules, courses, and now this blog on Bioinspiration is all because I really want to learn how to win this argument.
  • "Biomimicry Shoe" by Marieka Ratsma and Kostika Spaho. Interesting, definitely. Pretty, maybe.Biomimicry, definitely not.Photograph by Thomas van Schaik.

    Biomimicry Shoe” by Marieka Ratsma and Kostika Spaho. Interesting, yes. Pretty, maybe. Biomimicry, definitely not.
    Photograph by Thomas van Schaik.

    I then very briefly explained what I mean by Biomimicry and Bioinspiration. I do this quickly because the topic of definitions might evaporate all creativity out of these students. I put up Janine Benyus’ (Biomimicry3.8) Life’s principles, and also Robert J. Full’s quote about evolution working on the just good enough principle.  I actually spend more time on what I think biomimicry and bioinspiration is not. Students see these types of examples often in popular media because the terms have become buzzwords.

  • Why have biomimicry and bioinspiration become buzzwords? In my opinion it is probably because people like to think that if we copy/mimic/emulate nature, or at least base some or our new engineering designs on nature, then it is probably also more sustainable. And sustainability is itself a buzzword. I stressed in my presentation that that is not necessarily the case. The most famous example of bioinspiration is probably Velcro, which is made from synthetic materials that are not biodegradable and cost a lot of energy to produce.  For many scientists who are inspired by nature and use biomimicry or bioinspiration as a guide it is not sustainability per se that drives them. It is a guide to making new basic biological discoveries, or to innovate and solve a technological problem. “Why does an animal or a plant do that? And how can we use that what I have learned in a new technology?”
  • Next I make a very controversial statement: “I think my husband is basically correct.”  Of course, nature has not been able to carry 500 people across an ocean. Primarily because of the issue of scale. Nature works at a much smaller scale than we humans usually do. However, we currently live during very exciting times, where we can find inspiration for innovation at a smaller scale. We can now image at the nano-scale. That means that we can see structures and processes at a scale where very important things in nature happen. At the same time we are starting to be able to manufacture at that size scale too. We can start to build structures the way that nature builds materials and structures; hierarchical and from the bottom up.
RulerAnt

Dinoponera australis. Photograph by Alex Wild. http://www.alexanderwild.com.

  • Just consider an ant. Think of the interesting aspects of an ant’s body and life history. All these apsects have the potential to inspire us. (These are subjects I will blog about in greater detail at a later point).
  1. Exoskeleton (cuticle). Multifunctional. Made from relatively few elements (compared to all the elements from the periodic table we use to manufacture our multifunctional materials). One individual often has cuticle that has different characteristics – soft (larva, abdomen) or hard (adult, head), for instance. And on top of that, when molting occurs in the larval stages most of this cuticle is recycled and used in the new cuticle. No toxic substances required. All of life’s principles satisfied.
  2. Located on the surface of the cuticle are nanostructures that can help capture moisture, or give an insect color (as is the case in the Morpho butterfly).
  3. The locomotory mechanisms of insects, including ants, has inspired many bioinspired robots. I have tried to keep up with all the different bioinspired robots on this Pinterest Board.
  4. Insects, even tiny ones like this ant, have many interesting sensors on their bodies: compound eyes, simple eyes, antennae, mechanoreceptors, etc.
  5. Ant and termite nests have also been of interest for bioinspired architecture since through cooperative behavior they can build structures that are relatively stable and require few inputs (Again, unlike our own structures).
  6. And sociality in ants, the cohesion that exists between these “small brained” insects, has inspired electrical and computer engineers.
  7. And so on.
  • These are all examples of inspiration points from just an ant.
  • By this point it was my hope that students understand the possibilities that exist. I gave them some tips on how they can become “bioinspired”.

Avenues to becoming BioInspired (as a student in CIV)

1. Delve into biomimicry and bioinspiration basics

Students were asked watch two videos before the next BioCreativity meeting.

  1. Dayna Baumeister from Biomimicry3.8 at 2011 Bioneers conference  (her talk starts at 4:50min)
  2. Robert J. Full from UC Berkeley – TED talk entitled Engineering and Evolution

2. Delve into biomimicry and bioinspiration history

Students are encouraged to review some “famous” examples of bioinspired design.

Some general articles that introduce the topic:

The incredible science behind how nature solves every engineering problem. Business Insider. Jennifer Welsh. March 14, 2013.

Non-insect Top 10 (These are the most famous examples, I do not agree that all of these are in fact bioinspired or have been successful*):

  1. Cockleburs -> Velcro
  2. Lotus leaf -> Self-cleaning materials
  3. Gecko -> Gecko tape
  4. Whale fins -> Turbine blades
  5. Box Fish / Bone -> Bionic car
  6. Shark skin -> Friction reducing swim suits*
  7. Kingfisher beak -> Bullet train
  8. Ecosystems -> Industrial symbiosis
  9. Coral -> Calera cement*
  10. Forest floor / Ecosystem functioning -> Flooring tiles

Insect Top 10: I will cover all of these examples in detail in this blog.

  1. Morpho butterfly structural color
  2. Namib beetle water collecting
  3. Cockroach walking/running
  4. Insect flight
  5. Termite mound passive cooling
  6. Bee swarming
  7. Collembola skin
  8. Mosquito inspired microneedle
  9. Insect foot adaptations for adhesion
  10. Cockroach campaniform sensilla for sensing

Change your surroundings and go outside into nature

Here are some resources for when you go out into nature:

  1. Secrets of Watching Wildlife
  2. Get to know nature by keeping a journal

Go inside to view nature

Change your perspective

  • Look at things from different, less familiar angles. Look at a whole tree (Why is a tree that shape?), go closer (Why is the bark textured like that?), go even closer (Why does moss grow in those crevices).
  • Sketch or take pictures
  • Bring your friends – talk about what you are seeing.
Leonardo Da Vinci's sketch of a bird in flight. http://commons.wikimedia.org/wiki/Leonardo_da_Vinci

Leonardo Da Vinci’s sketch of a bird in flight.
http://commons.wikimedia.org/wiki/Leonardo_da_Vinci

See what others are doing

  1. http://zqjournal.org/
  2. http://bouncingideas.wordpress.com/
  3. http://bioinspiredink.blogspot.com/
  4. http://ciber.berkeley.edu/
  5. http://wyss.harvard.edu/
  6. http://templebiomimetics.wordpress.com/category/bioinspiration/
  7. http://ase.tufts.edu/biology/labs/trimmer/
  8. http://www.biokon.net/index.shtml.de
  9. http://swedishbiomimetics.com/
  10. http://www.fastcompany.com/biomimicry
  11. http://inhabitat.com/index.php?s=biomimicry

Find inspiration on the web (look at great pictures of nature, read great stories about biology).

Go to the bookstore or library

BookCovers

Bioinspiraton and Biomimicry book covers from my eReader and at my lab.

  • Cats’ paws and catapults: mechanical worlds of nature and people. Steven Vogel. 2000
  • Biomimicry: Innovation inspired by nature. Janine M. Benyus. 2002
  • The gecko’s foot: bio-inspiration: engineering new materials from nature. Peter Forbes. 2006
  • Bulletproof feathers: How science uses nature’s secrets to design cutting-edge technology. Robert Allen. 2010
  • Biomimetics: Biologically inspired technologies. Yoseph Bar-Cohen. 2005
  • Biomimicry in architecture. Michael Pawlyn. 2011
  • Biomimetics in Architecture: Architecture of Life and Buildings. Petra Gruber. 2010
  • Biomimicry: Innovation inspired by nature. Janine M. Benyus. 2002
  • The smart swarm: How to work efficiently, communicate effectively, and make better decisions using the secrets of flocks, schools, and colonies. Peter Miller. 2010
  • Learning from the octopus: How secrets from nature can help us fight terrorist attacks, natural disasters and disease. Rafe Sagarin. 2012
  • Darwin’s devices: What evolving robots can teach us about the history of life and the future of technology. John Long. 2012.
  • How to catch a robot rat: When biology inspires innovation. Agnes Guillot and Jean-Arcady Meyer. 2010.
  • Etc.

Use Social media

For example Twitter. I suggest you follow these folks because they often tweet links to interesting bioinspiration or biomimicry (and thus biocreativity) topics.

And then I sent the students off into the world, to get inspired. Actually, I explained a little bit more about the project we want them to do, but I will leave those details until the next blog post about BioCreativity.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

(1)  This research by Burgon, et al. (under review) measured the creativity of first- and fourth-year engineering students using two nationally-normed creativity assessment instruments. I will blog more about this work when it has been published.

(2) More information about the Creativity, Innovation and Vision courses:

Two videos that introduce the topics discussed in the courses can be seen here:

  1. Part 1: http://youtu.be/6Csl7VPaG1k
  2. Part 2: http://youtu.be/c4BIa1RtpnI

And here is a pdf of  the First Day Course Pack.